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Abstract. Non-Euclidean complex data analysis becomes increasingly popular in various fields

of data science. In a seminal paper, Petersen and Müller (2019) generalized the notion of

regression analysis to non-Euclidean response objects. Meanwhile, in the conventional regression

analysis, model averaging has long history and is widely applied in statistics literature. This

paper generalizes the notion of model averaging for global Fréchet regressions and establishes

an optimal property of the cross validation to select the averaging weights in terms of the

final prediction error. A simulation study illustrates excellent out-of-sample predictions of the

proposed method.

1. Introduction

Non-Euclidean complex data analysis becomes increasingly popular in various fields of data
science (see, Marron and Alonso, 2014, for an overview). A fundamental object to describe dis-
tributions of non-Euclidean random objects is the so-called Fréchet mean (Fréchet, 1948), which
is a generalization of the conventional population mean. There is growing literature on statistical
inference for the Fréchet means (see, e.g., Patrangenaru and Ellingson, 2015, for a survey). Re-
cently, in a seminal paper, Petersen and Müller (2019) generalized the notion of the Fréchet mean
to conditional distributions, and developed nonparametric and least square regression analyses
for non-Euclidean random objects, called the local and global Fréchet regressions, respectively.

In the conventional regression analysis, a central question is how to select or combine infor-
mation from various predictors, and model selection and model averaging are widely applied in
the statistics literature (see, Claeskens and Hjort, 2008, for a survey). Indeed Tucker, Wu and
Müller (2021) developed a model selection method for global Fréchet regressions by extending the
ridge selection operator to the present context, and established its selection consistency.1 This
paper addresses another open question, model averaging of regression models for non-Euclidean
response objects.

In this paper, we generalize the notion of model averaging for global Fréchet regressions and
establishes an optimal out-of-sample prediction property of the cross validation to select the
averaging weights in terms of the final prediction error (Akaike, 1970). First of all, it is not trivial
how to conduct model averaging for global Fréchet regressions which reside in non-Euclidean
spaces. By adapting construction of the empirical Fréchet mean to weighted averages over a
class of global Fréchet regressions, we develop a model averaging scheme as a minimizer of a
weighted average of squared metrics of global Fréchet regressions. Second, to the best of our
knowledge, this is the first paper that builds and studies the notions of the final prediction

Our research is supported by JSPS KAKENHI (JP23K12456) (Kurisu).
1See also Ying and Yu (2022) for sufficient dimension reduction on non-Euclidean random objects using Euclidean
predictors.
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error for out-of-sample predictions and cross validation for regression analyses on non-Euclidean
random objects. In contrast to Tucker, Wu and Müller (2021) who studied consistent model
selection for global Fréchet regressions, this paper investigates optimal model averaging for the
out-of-sample prediction when all global Fréchet regressions are misspecified.

This paper is organized as follows. Section 2 introduces our basic setup and model averaging
estimator. Section 3 presents our main result, asymptotic optimality of the cross validation to
select the model averaging weights in terms of the final prediction error. Section 4 illustrates the
main result by a simulation study.

2. Model averaging estimator

Let (Ω, d) be a totally bounded metric space. We consider a random process (X,Y ) ∼ F ,
where X and Y take values in Rp and Ω, respectively, and F is the joint distribution of (X,Y )

on Rp × Ω. We are concerned with the situation where Y is a complex random object so that
the space Ω may be non-Euclidean and may not lie in a vector space. In such a situation, a
standard notion of mean is the so-called Fréchet mean ω⊕ = arg minω∈Ω E[d2(Y, ω)], and there
is rich literature on statistical inference for ω⊕.

In a seminal paper, Petersen and Müller (2019) extended the notion of the Fréchet mean to re-
gression problems and proposed the Fréchet regression function ω⊕(x) = arg minω∈Ω E[d2(Y, ω)|X =

x]. Furthermore, Petersen and Müller (2019) generalized the idea of global least squares regres-
sion and developed the global Fréchet regression:

L⊕(x) = arg min
ω∈Ω

E[{1 + (x− µ)′Σ−1(X − µ)}d2(Y, ω)],

where µ = E[X] and Σ = Var(X). Note that L⊕(x) becomes the conventional population least
square regression when Ω is Euclidean and d is the Euclidean metric.

We now introduce our setup for model averaging of global Fréchet regressions. Hereafter
x = (x1, x2, . . .)

′ takes values in R∞. Let X(m) = (X1, X2, . . . , Xkm)′ ∈ Rkm (m = 1, . . . ,M) be
a nested sequence of predictors for 0 ≤ k1 < k2 < . . . . < kM , x(m) = (x1, x2, . . . , xkm)′ ∈ Rkm ,
and for m = 1, . . . ,M ,

L
(m)
⊕ (x) = arg min

ω∈Ω
E[{1 + (x(m) − µ(m))′(Σ(m))−1(X(m) − µ(m))}d2(Y, ω)],

be the global Fréchet regression based on the predictors X(m), where µ(m) = E[X(m)] and
Σ(m) = Var(X(m)). In this paper, M is treated as fixed. In order to build the notion of model
averaging for the global Fréchet regressions {L(m)

⊕ (x)}Mm=1, we note that in the d-dimensional
Euclidean space, the weighted average l̄w =

∑M
m=1wml

(m) of points l(m) ∈ Rd can be defined as

l̄w = arg min
ω∈Rd

M∑
m=1

wmd
2
E(l(m), ω),

for the Euclidean metric dE . Then the model averaging for global Fréchet regressions can be
defined as

m⊕(w, x) = arg min
ω∈Ω

M∑
m=1

wmd
2(L

(m)
⊕ (x), ω).
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Based on an independent and identically distributed sample Dn = {X(M)
i , Yi}ni=1 of (X(M), Y ),

L
(m)
⊕ (x) and m⊕(w, x) can be estimated by their sample counterparts:

L̂
(m)
⊕ (x) = arg min

ω∈Ω

1

n

n∑
i=1

{1 + (x(m) − X̄(m))′(Σ̂(m))−1(X
(m)
i − X̄(m))}d2(Yi, ω),

m̂⊕(w, x) = arg min
ω∈Ω

M∑
m=1

wmd
2(L̂

(m)
⊕ (x), ω),

where X̄(m) = 1
n

∑n
i=1X

(m)
i and Σ̂(m) = 1

n−1

∑n
i=1(X

(m)
i − X̄(m))(X

(m)
i − X̄(m))′.

As a criterion to evaluate model averaging weights, we extend the notion of the final prediction
error (Akaike, 1970) to the global Fréchet regression as

FPEn(w) = E[d2(Y, m̂⊕(w,X ))|Dn],

where (X ,Y) is an independent copy of (X
(M)
i , Yi). In this paper, we consider the situation

where all global Fréchet regressions and their averaging versions are misspecified, and develop a
selection rule for the averaging weights to achieve an optimal out-of-sample prediction property
in terms of FPEn(w). This is a sharp contrast with the approach in Tucker, Wu and Müller
(2021), which focuses on consistent selection of a true model.

As a feasible selection rule for the optimal weights, we propose to minimize the leave-one-out
cross validation criterion:

CVn(w) =
1

n

n∑
i=1

d2(Yi, m̂⊕,−i(w, Xi)),

where m̂⊕,−i(w, x) = arg minω∈Ω
∑M

m=1wmd
2(L̂

(m)
⊕,−i(x), ω), and L̂(m)

⊕,−i(x) is defined as L̂(m)
⊕ (x)

with the i-th observation deleted. Letting W = {w = (w1, . . . , wM )′ ∈ [0, 1]M :
∑M

m=1wm = 1},
our model averaging estimator for global Fréchet regressions is defined as

m̂⊕(ŵ, x), where ŵ = arg min
w∈W

CVn(w).

3. Optimality

We now present our main result, optimality of the model averaging estimator m̂⊕(ŵ, x) in

terms of the final prediction error. Let ‖x‖`2 =
(∑∞

j=1 x
2
j

)1/2
be a norm of the `2 space,

‖z‖`1 =
∑M

m=1 |zm| for z ∈ RM , and

R(w, x, ω) =

M∑
m=1

wmd
2(L

(m)
⊕ (x), ω), R̂(w, x, ω) =

M∑
m=1

wmd
2(L̂

(m)
⊕ (x), ω).

We impose the following assumptions.

Assumption.

(1) (Ω, d) is a totally bounded metric space, P(‖X(M)‖`2 ≤ B) = 1 for some B > 0, L(m)
⊕ (x)

is continuous at x with ‖x(M)‖`2 ≤ B, and the global Fréchet regression estimators
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{L̂(m)
⊕ (x)}Mm=1 are uniformly consistent in the sense that

max
1≤m≤M

sup
‖x(M)‖`2≤B

d(L̂
(m)
⊕ (x), L

(m)
⊕ (x))

p→ 0.

(2) Almost surely, for each w ∈ W and ‖x(M)‖`2 ≤ B, m⊕(w, x) and m̂⊕(w, x) exist and
are unique. Additionally, for each ε > 0,

inf
w∈W,‖x(M)‖`2≤B

inf
d(ω,m⊕(w,x))>ε

R(w, x, ω)−R(w, x,m⊕(w, x)) > 0.

(3) There exist D̄B > 0 and 0 < βB ≤ 1 such that for each w1,w2 ∈W,

sup
‖x(M)‖`2≤B

d(m⊕(w1, x),m⊕(w2, x)) ≤ D̄B‖w1 −w2‖βB`1 .

(4) There exists κ > 0 such that infw∈W E[d2(Y,m⊕(w, X))] ≥ κ.

Assumption (1) contains conditions on the support of Y and X, and a high-level condition on
the uniform consistency of the global Fréchet regression estimators whose primitive conditions
can be found in Petersen and Müller (2019, Theorem 1). Assumptions (2) is an additional
condition to guarantee uniform consistency of the model averaging estimator m̂⊕(w, x), which is
an analog of Petersen and Müller (2019, Condition (U0)) and is commonly imposed to derive the
consistency of M-estimators (see, e.g., van der Vaart and Wellner, 1996). Assumptions (3)-(4)
are additional conditions to establish the asymptotic optimality of our model averaging estimator
m̂⊕(ŵ, x) using the cross validation. Assumption (3) is a Lispschitz-type condition for weights
to derive uniform convergence of 1

n

∑n
i=1 d

2(Yi,m⊕(w, Xi)). Assumption (4) says that all the
global Fréchet regressions and their averaged versions are misspecified so that it is natural to
evaluate model averaging weights by out-of-sample predictions.

Based on these assumptions, our main result is presented as follows.

Theorem.

(1) Under Assumptions 1-2, it holds

sup
w∈W,‖x(M)‖`2≤B

d(m̂⊕(w, x),m⊕(w, x))
p→ 0.

(2) Under Assumptions 1-4, it holds

FPEn(ŵ)

infw∈W FPEn(w)

p→ 1.

Theorem (1) shows uniform consistency of the model averaging estimator m̂⊕(w, x) over the
weights w and values of predictors x. Theorem (2) establishes the optimal out-of-sample predic-
tion property of our averaging weights ŵ that minimizes the cross validation criterion CVn(w).
This result says FPEn(ŵ) by using ŵ is asymptotically equivalent to the oracle final prediction
error to minimize FPEn(w) over w ∈W.

We close this section by illustrating our main result by some specific examples.

Example 1. [Symmetric positive-definite matrices with the Frobenius norm] Let Ω be the set
of symmetric positive-definite matrices with the Frobenius norm. For this example, Petersen
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and Müller (2019, Proposition 2 and Theorem 1) guarantee Assumption (1). Let L(m)
⊕ (x) be the

global Fréchet regression function of them-th model. The model average global Fréchet regression
function m⊕(w, x) is given by m⊕(w, x) =

∑M
m=1wmL

(m)
⊕ (x). Applying a similar argument in

the proof of Petersen and Müller (2019, Proposition 2), one can see that Assumptions (2) and
(3) are satisfied with βB = 1.

Example 2. [Functional data with L2 metric] Let Ω =
{
f : [0, 1] 7→ R,

∫ 1
0 f

2(t)dt <∞
}
equipped

with the L2 metric dL2 defined as

dL2(f, g) =

√∫ 1

0
(f(t)− g(t))2dt,

for any f, g ∈ Ω. For this example, Petersen and Müller (2019, Corollary2) guarantee Assumption
(1). Let L(m)

⊕ (x) be the global Fréchet regression function of the m-th model. The model
average global Fréchet regression function m⊕(w, x) is given by m⊕(w, x) =

∑M
m=1wmL

(m)
⊕ (x)

and Assumptions (2) and (3) are satisfied with βB = 1.

Example 3. [Probability distributions with Wasserstein metric] Let Ω be the set of probability
distributions F on R such that

∫
R x

2dF (x) < ∞ equipped with the Wasserstein metric dW
defined as

dW (F1, F2) =

√∫ 1

0
(F−1

1 (t)− F−1
2 (t))2dt,

for the quantile functions F−1
1 and F−1

2 of probability distributions F1 and F2. For this example,
Petersen and Müller (2019, Proposition 1 and Theorem 1) guarantee Assumption (1). Let L(m)

⊕ (x)

be the global Fréchet regression function of them-th model, which is a distribution function on R,
and let L(m)−1

⊕ (x) be the quantile function of L(m)
⊕ (x). The quantile function of the model average

global Fréchet regression function m−1
⊕ (w, x) is given by m−1

⊕ (w, x) =
∑M

m=1wmL
(m)−1
⊕ (x).

Applying a similar argument in the proof of Petersen and Müller (2019, Proposition 1), one can
see that Assumptions (2) and (3) are satisfied with βB = 1.

Example 4. [Bounded Riemann manifold with geodesic distance] This example considers spher-
ical data. Let Ω = S2, the unit sphere in R3, equipped with the geodesic distance dg(x1, x2) =

arccos(x>1 x2) for x1, x2 ∈ S2. Specifically, Petersen and Müller (2019) and Tucker, Wu and
Müller (2021) considered the following Fréchet regression model. Let ω⊕(x) ∈ S2 be a regression
function and V be a random vector on the tangent space Tω⊕(X). Define Y as an exponential
map of V at ω⊕(X), i.e.,

Y = Expω⊕(X)(V ) = cos(‖V ‖E)ω⊕(X) + sin(‖V ‖E)
V

‖V ‖E
,

where ‖ · ‖E is the Euclidean norm. Petersen and Müller (2019, Proposition 3) gives sufficient
conditions of Assumption (1).

4. Simulation

4.1. Data generating process. We consider the set of symmetric positive-definite (SPD) ma-
trices as Ω. For SPD matrices A1 and A2, the Cholesky decomposition yields A1 = (A

1/2
1 )′A

1/2
1
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and A2 = (A
1/2
2 )′A

1/2
2 , where A1/2

1 and A1/2
2 are upper triangle matrices with positive diagonal

components. Then define the Cholesky decomposition distance between A1 and A2 as

dC(A1, A2) =

√
trace((A1/2

1 −A1/2
2 )′(A

1/2
1 −A1/2

2 )).

For predictors Xi = (Xi,1, . . . , Xi,p)
′, we consider two kinds of designs. (i) Generate p-

dimensional multivariate Gaussian random variables Zi = (Zi,1, . . . , Zi,p)
′ with E[Zi,j ] = 0 and

Cov(Zi,j , Zi,k) = ρ|j−k|, and then set Xi,j = 2Φ(Zi,j), where Φ(·) is the standard normal distri-
bution function. (ii) Generate Xi,j = Ui,j , where {Ui,j}1≤i≤n,1≤j≤p is an array of independent
and identically distributed random variables with the uniform distribution on [0, 2]. We set the
random object Yi as T × T SPD matrix and consider the following Fréchet regression function:
ω⊕(x) = E[Y |X = x] = E[A]′E[A], where

E[A] =
{
µ0 + β

(
x1 +

x3

3
+
x5

5
+
x7

7
+
x9

9

)
+ σ0 + γ

(x2

2
+
x4

4
+
x6

6
+
x8

8

)}
IT

+
{
σ0 + γ

(x2

2
+
x4

4
+
x6

6
+
x8

8

)}
V,

with the T × T identity matrix IT and a T × T matrix V = (I{j<k}). Conditional on X =

(X1, . . . , X9)′, the random response Y is generated by Y = A′A, where A = (µ+σ)IT +σV with

µ|X ∼ N

(
µ0 + β

(
X1 +

X3

3
+
X5

5
+
X7

7
+
X9

9

)
, ν1

)
,

σ|X ∼ Gamma

(
ν−1

2

(
σ0 + γ

(
X2

2
+
X4

4
+
X6

6
+
X8

8

))2

,
ν2

σ0 + γ
(
X2
2 + X4

4 + X6
6 + X8

8

)) .
In our simulation study, we set n ∈ {50, 100}, p = 9, ρ = 0.5, T = 5, µ0 = 3, σ0 = 3, β = 2,

ν1 = 1, and ν2 = 2.
Let L(m)

⊕ (x) be the global Fréchet regression function of them-th model and let (L
(m)1/2
⊕ (x))′L

(m)1/2
⊕ (x)

be the Cholesky decomposition of L(m)
⊕ (x). In this case, the model average global Fréchet re-

gression function m⊕(w, x) is given by

m⊕(w, x) =

(
M∑
m=1

wmL
(m)1/2
⊕ (x)

)′( M∑
m=1

wmL
(m)1/2
⊕ (x)

)
.

4.2. Results. We consider the following three methods to choose the weights in the model
averaging: (i) the proposed cross validation-based model averaging (CV), (ii) AIC-type model
averaging, and (iii) BIC-type model averaging.

For the m-th model, we define the AIC- and BIC-type information criteria as

AICm = n log

(
1

n

n∑
i=1

d2
C(Yi, L̂

(m)
⊕ (Xi))

)
+ 2km,

BICm = n log

(
1

n

n∑
i=1

d2
C(Yi, L̂

(m)
⊕ (Xi))

)
+ km log n.

6



Then the AIC- and BIC-type model average estimators are defined as

m̂⊕(ŵAIC, x) = arg min
ω∈Ω

M∑
m=1

ŵAIC
m d2

C(L̂
(m)
⊕ (x), ω) with ŵAIC

m =
exp(−AICm/2)∑M
j=1 exp(−AICj/2)

,

m̂⊕(ŵBIC, x) := arg min
ω∈Ω

M∑
m=1

ŵBIC
m d2

C(L̂
(m)
⊕ (x), ω) with ŵBIC

m =
exp(−BICm/2)∑M
j=1 exp(−BICj/2)

,

respectively.
We evaluate each method using the out-of-sample prediction error. For each Monte Carlo

replication, we generate {Xs, Ys}100
s=1 as out-of-sample observations. For the r-th replication, the

final prediction error is calculated as

FPE(r) =
1

100

100∑
s=1

d2
C(Ys, m̂⊕(ŵ, Xs)).

where ŵ is chosen by one of the three methods. Then we average the out-of-sample prediction
error over R = 200 replications: FPE = 1

R

∑R
r=1 FPE(r). We consider 5 nested models Mk

that use predictors {Xi,1, . . . , Xi,k} for k = 1, . . . , 5 and compute FPEs of 4 model averaging
estimators that use {M1, . . . ,Mk} for k = 2, . . . , 5 for the three averaging methods.

Figure 1. FPE of CV, AIC, and BIC for n = 50 (left) and n = 100 (right) with
correlated predictors. M2, M3, M4, and M5 correspond to the model averaging
estimator that use {M1, . . . ,Mk}, k = 2, 3, 4, 5.
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Figure 2. FPE of CV, AIC, and BIC for n = 50 (left) and n = 100 (right)
with independent predictors. M2, M3, M4, and M5 correspond to the model
averaging estimator that use {M1, . . . ,Mk}, k = 2, 3, 4, 5.

Figures 1-2 present the FPEs for the predictors generated by (i) and (ii), respectively. Our cross
validation weights ŵ outperform other averaging weights for all the cases. The improvements in
terms of the values of the FPEs are larger for the case of correlated predictors in Figure 1.
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Appendix A. Mathematical appendix

A.1. Proof of Theorem (1). First, we show the pointwise convergence:

d(m̂⊕(w, x),m⊕(w, x))
p→ 0 for each w ∈W and x ∈ `2. (1)

Pick any w ∈W and x ∈ `2. By van der Vaart and Wellner (1996, Corollary 3.2.3), it is sufficient
for (1) to show supω∈Ω |R̂(w, x, ω)−R(w, x, w)| p→ 0. For this, we show that R̂(w, x, ·) converges
weakly to R(w, x, ·) in `∞(Ω), and then apply van der Vaart and Wellner (1996, Theorem 1.3.6).
By van der Vaart and Wellner (1996, Theorem 1.5.4), this weak convergence follows by showing
that

(i): R̂(w, x, ω)−R(w, x, ω)
p→ 0 for each ω ∈ Ω.

(ii): R̂(w, x, ω) is asymptotically equicontinuous in probability, i.e., for each ε, η > 0, there
exists δ > 0 such that

lim sup
n→∞

P

(
sup

d(ω1,ω2)<δ
|R̂(w, x, ω1)− R̂(w, x, ω)| > ε

)
< η.

Pick any ω ∈ Ω. For (i), observe that

|R̂(w, x, ω)−R(w, x, ω)|

≤
M∑
m=1

wm|{d(L̂
(m)
⊕ (x), ω) + d(L

(m)
⊕ (x), ω)}{d(L̂

(m)
⊕ (x), ω)− d(L

(m)
⊕ (x), ω)}|

≤ 2diam(Ω)

M∑
m=1

wm|d(L̂
(m)
⊕ (x), ω)− d(L

(m)
⊕ (x), ω)|

≤ 2diam(Ω) max
1≤m≤M

d(L̂
(m)
⊕ (x), L

(m)
⊕ (x))

p→ 0.

where the first inequality follows from the triangle inequality, the second inequality follows from
d(ω̃, ω) ≤ diam(Ω) for any ω̃ ∈ Ω, the third inequality follows from the triangle inequality and∑M

m=1wm = 1, and the convergence follows from Assumption (1).
Pick any ω1, ω2 ∈ Ω. For (ii), a similar argument yields

|R̂(w, x, ω1)− R̂(w, x, ω2)|

≤
M∑
m=1

wm|{d(L̂
(m)
⊕ (x), ω1) + d(L̂

(m)
⊕ (x), ω2)}{d(L̂

(m)
⊕ (x), ω1)− d(L̂

(m)
⊕ (x), ω2)}|

≤ 2diam(Ω)

M∑
m=1

wm|d(L̂
(m)
⊕ (x), ω1)− d(L̂

(m)
⊕ (x), ω2)|

≤ 2diam(Ω)d(ω1, ω2),

which implies supd(ω1,ω2)<δ |R̂(w, x, ω1)− R̂(w, x, ω2)| = Op(δ) so that we obtain (ii). Therefore,
we obtain (1).

Next, we show the uniform convergence. Consider the process Zn(w, x) = d(m̂⊕(w, x),m⊕(w, x)).
By (1), we have Zn(w, x)

p→ 0 for each w ∈W and ‖x(M)‖`2 ≤ B. By van der Vaart and Wellner
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(1996, Theorem 1.5.4), it is sufficient to show that for each S > 0,

lim sup
n→∞

P

 sup
w1,w2∈W,‖w1−w2‖`1<δ,

‖x(M)
1 ‖`2 ,‖x

(M)
1 ‖`2≤B,‖x

(M)
1 −x(M)

2 ‖`2<δ

|Zn(w1, x1)− Zn(w2, x2)| > 2S

→ 0, (2)

as δ → 0. Since

|Zn(w1, x1)− Zn(w2, x2)| ≤ d(m⊕(w1, x1),m⊕(w2, x2)) + d(m̂⊕(w1, x1), m̂⊕(w2, x2)),

by the triangle inequality, it is sufficient for (2) to show that m⊕(·, ·) is uniformly continuous
over w ∈W and ‖x(M)‖`2 ≤ B and that

lim sup
n→∞

P

 sup
w1,w2∈W,‖w1−w2‖`1<δ,

‖x(M)
1 ‖`2 ,‖x

(M)
1 ‖`2≤B,‖x

(M)
1 −x(M)

2 ‖`2<δ

d(m̂⊕(w1, x1), m̂⊕(w2, x2)) > S

→ 0, (3)

as δ → 0.
Now, pick any δ > 0 and then pick any w1,w2 ∈ W with ‖w1 −w2‖`1 < δ, and x1, x2 ∈ `2

with ‖x(M)
1 −x(M)

2 ‖`2 < δ. Note that Assumption (1) guarantees uniformly continuity of L(m)
⊕ (x)

over ‖x(M)‖`2 ≤ B for m = 1, . . . ,M . Then due to the form of R(w, x, ω), we have

ζ < sup
ω∈Ω
|R(w1, x1, ω)−R(w2, x2, ω)|

≤ max{diam(Ω), 2}2
{
‖w1 −w2‖`1 + max

1≤m≤M
d(L

(m)
⊕ (x1), L

(m)
⊕ (x2))

}
≤ 2(1 + C) max{diam(Ω), 2}2(O(δ) + o(1)) as δ → 0,

for some C > 0. Thus, Assumption (2) implies that m⊕ is continuous at (w, x) and thus
uniformly continuous over (w, x(M)) ∈W×{x(M) : ‖x(M)‖`2 ≤ B}. To show (3), pick any ε > 0,
and suppose d(m̂⊕(w1, x1),m⊕(w2, x2)) > ε with w1,w2 ∈ W and ‖x(M)

1 ‖`2 , ‖x
(M)
2 ‖`2 ≤ B.

Observe that

S < sup
w1,w2∈W,‖w1−w2‖`1<δ,

‖x(M)
1 ‖`2 ,‖x

(M)
1 ‖`2≤B,‖x

(M)
1 −x(M)

2 ‖`2<δ

|R̂(w1, x1, ω)− R̂(w2, x2, ω)|

≤ max{diam(Ω), 2}2 sup
w1,w2∈W,‖w1−w2‖`1<δ,

‖x(M)
1 ‖`2 ,‖x

(M)
1 ‖`2≤B,‖x

(M)
1 −x(M)

2 ‖`2<δ

{
‖w1 −w2‖`1 + max

1≤m≤M
d(L̂

(m)
⊕ (x1), L̂

(m)
⊕ (x2))

}

≤ max{diam(Ω), 2}2 sup
w1,w2∈W,‖w1−w2‖`1<δ,

‖x(M)
1 ‖`2 ,‖x

(M)
1 ‖`2≤B,‖x

(M)
1 −x(M)

2 ‖`2<δ

{
‖w1 −w2‖`1 + max

1≤m≤M
d(L

(m)
⊕ (x1), L

(m)
⊕ (x2))

}

+op(1)

= O(δ) + op(1),
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as δ → 0, where the second inequality follows from the triangle inequality, third inequality
follows from the uniform convergence of L̂(m)

⊕ (x) in Assumption (1), and the equality follows
from uniform continuity of L(m)

⊕ (x) over ‖x(M)‖`2 ≤ B.
Therefore, we obtain (3), and the conclusion of the theorem follows.

A.2. Proof of Theorem (2). First, we show

sup
w∈W

|CVn(w)− FPEn(w)| p→ 0. (4)

Decompose

CVn(w)− FPEn(w) =
1

n

n∑
i=1

{d2(Yi, m̂⊕,−i(w, Xi))− d2(Yi,m⊕(w, Xi))}

+
1

n

n∑
i=1

{d2(Yi,m⊕(w, Xi))− E[d2(Y,m⊕(w, X))]}

+{E[d2(Y,m⊕(w, X))]− FPEn(w)}

=: T1(w) + T2(w) + T3(w).

For T1(w), Theorem (1) implies

sup
w∈W

|T1(w)| ≤ 2diam(Ω) sup
w∈W,‖x(M)‖`2≤B

d(m̂⊕(w, x),m⊕(w, x))
p→ 0. (5)

For T2(w), we show

sup
w∈W

∣∣∣∣∣ 1n
n∑
i=1

{d2(Yi,m⊕(w, Xi))− E[d2(Y,m⊕(w, X))]}

∣∣∣∣∣ = Op(n
−1/2). (6)

Define hw(y, z) = d2(y,m⊕(w, z)) and FW = {hw(y, z) : w ∈W}. An envelop function of FW is
FW = diam(Ω)2. By Assumption (3), we have

|hw1(y, z)− hw2(y, z)|

≤ |d(y,m⊕(w1, z)) + d(y,m⊕(w2, z))||d(y,m⊕(w1, z))− d(y,m⊕(w2, z))|

≤ 2D̄Bdiam(Ω)‖w1 −w2‖βB`1 .

Thus, from van der Vaart and Wellner (1996, Theorems 2.14.2 and 2.7.11), it holds

E

[
sup
w∈W

∣∣∣∣∣ 1n
n∑
i=1

{d2(Yi,m⊕(w, Xi))− E[d2(Y,m⊕(w, X))]}

∣∣∣∣∣
]

.
1√
n

∫ 1

0

√
1 + logN[](2εD̄Bdiam(Ω),FW, ‖ · ‖)dε

≤ 1√
n

∫ 1

0

√
1 + logN(ε,W, ‖ · ‖`1)dε .

1√
n

∫ 1

0

√
1 + log(ε−M/βB )dε

.
1√
n

(1 +
√
M

∫ 1

0

√
− log ε)dε = O(n−1/2),

where N[](ε,FW, ‖ · ‖) is the ε-bracketing number of FW with respect to any norm ‖ · ‖. This
yields (6).
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For T3(w), a similar argument to (5) yields

sup
w∈W

|E[d2(Y,m⊕(w, X))]− FPEn(w)|

≤ 2diam(Ω) sup
w∈W,‖x(M)‖E≤B

d(m̂⊕(w, x),m⊕(w, x))
p→ 0, (7)

where the convergence follows from Theorem (1).
Combining (5)-(7), we obtain (4).
Next, we show

FPEn(ŵ) = inf
w∈W

E[d2(Y,m⊕(w, X))] + op(1). (8)

Observe that

FPEn(ŵ) = CVn(ŵ) + op(1) = inf
w∈W

CVn(w) + op(1)

= inf
w∈W

FPEn(w) + op(1) = inf
w∈W

E[d2(Y,m⊕(w, X))] + op(1),

where the first and third equalities follow from (4), the second equality follows from the definition
of ŵ, and the last equality follows from (7). Therefore, we obtain (8).

Finally, we complete the proof. From (7), we have

inf
w∈W

FPEn(w) = inf
w∈W

E[d2(Y,m⊕(w, X))] + op(1). (9)

Combining (8), (9), and Assumption (4), we obtain the conclusion.
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